The count-and-say sequence is a sequence of digit strings defined by the recursive formula:

countAndSay(1) = "1" countAndSay(n) is the way you would "say" the digit string from countAndSay(n-1), which is then converted into a different digit string. To determine how you "say" a digit string, split it into the minimal number of groups so that each group is a contiguous section all of the same character. Then for each group, say the number of characters, then say the character. To convert the saying into a digit string, replace the counts with a number and concatenate every saying. Example 1:

Input: n = 1 Output: "1" Explanation: This is the base case.

Example 2: Input: n = 4 Output: "1211" Explanation: countAndSay(1) = "1" countAndSay(2) = say "1" = one 1 = "11" countAndSay(3) = say "11" = two 1's = "21" countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"

#leetcode #medium

countAndSay(1) = "1" countAndSay(n) is the way you would "say" the digit string from countAndSay(n-1), which is then converted into a different digit string. To determine how you "say" a digit string, split it into the minimal number of groups so that each group is a contiguous section all of the same character. Then for each group, say the number of characters, then say the character. To convert the saying into a digit string, replace the counts with a number and concatenate every saying. Example 1:

Input: n = 1 Output: "1" Explanation: This is the base case.

Example 2: Input: n = 4 Output: "1211" Explanation: countAndSay(1) = "1" countAndSay(2) = say "1" = one 1 = "11" countAndSay(3) = say "11" = two 1's = "21" countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"

#leetcode #medium

Public